财新传媒 财新传媒

阅读:0
听报道
撰文 | 慕云深
 
我国的EAST人造太阳不久前实现了将1.5亿摄氏度高温等离子体维持101秒的记录,标志着我们走向可控核聚变的重要一步。可控核聚变的原理,本质上就是把两颗氢原子核捏成一颗氦原子核。为此,必须用高达数亿度的温度将其“捏”在一起。
 
那么问题来了:这么高的温度,我们是如何测量的呢?会有一个能测出这么高温度的温度计吗?
 
你真的知道温度是什么吗?
 
质量描述的是物体有多少物质,长度描述的是物体占据一维空间的大小,那么温度(temperature)到底是什么呢?我们可以直观地感受到物质的冷热,但对温度的本质却并不了解。
 
虽然人们不知道温度到底是什么,但科学家很早就知道物体的热胀冷缩现象。利用这一点,人们很早就发明了温度计,利用液体的不同体积和其温度的对应关系,来测量温度。
人体表面温度的分布丨来源:百度百科
 
为了描述温度的高低,人们发明了不同的温标。例如摄氏温标(°C)规定,水的凝固点是0°C,沸点是100°C,将其中的温度差平均分为100份,每份就是1°C。
 
而华氏温标(°F)规定,水的凝固点是32°F,沸点是212°F,其中的温度差平均分为180份,每份就是1°F。
摄氏度与华氏度丨来源:http://www.vimsky.com
 
直到近代,物理学家才了解到物质都是由小微粒组成的,而且这些小微粒都在不停地做着无规则的运动。人们发现,越热的物体,其中的小微粒的运动也越快,而越冷的物体,其中的小微粒的运动就越慢。(其实准确地说,热的物体其单独的某一分子运动并非一定比冷的物体快,只是整体平均来看,热的物体所有分子的“平均速度”比冷物体的分子平均速度快)。
 
此时我们才真正理解温度的本质:温度是构成物体的微粒的平均运动速度的量度。
温度升高,微粒的随机运动加快丨来源:https://study.com/
 
(按定义来说,温度是构成物体的微粒的“平均动能”的量度,温度正比于这一平均动能,而动能正比于运动速度的平方。为了方便理解,此处简化为温度与微粒的运动速度相关。)
 
于是,人们就找到了一个真正意义上的温度的零点,也就是当微粒的随机运动完全停止的时候,此时的温度就应当定义为零度。这就是我们通常所说的“绝对零度”(absolute zero)。
 
经过理论计算可以发现,这一绝对零度的数值约为-273.15°C。如果把摄氏温标中的零点位置向下挪动273.15°C,这样所有的温度就都是正数,这种温标也被称为开尔文温标(K)。
三种温标的比较丨来源:https://files.mtstatic.com/
 
曲线救国:常见的测温工具
 
在测量某个物理量的时候,我们有两种不同的策略:测量这个量的本身,或者测量这个量所引起的其他效果。
 
例如,我们要测量一个长方体的体积,可以有两种方法:测量其长宽高,然后相乘得到体积,这就是直接测量体积本身。另一种方法是,我们将这个长方体浸入水中,测量排出的水的多少,来换算成长方体的体积。这种方法实际上是在测量“体积所引起的排水效应”,从而间接测量体积这个物理量。
 
前面我们讲过,温度描述的是物体中的微粒运动的速度。由于我们很难将微粒剥离出来并且逐个测量其速度,所以日常生活中我们使用的测温装置,往往都是在测量“温度引起的其他效应”。
 
最简单的就是上文提到过的液体温度计,利用的是温度引起的热胀冷缩效应;疫情防控常用的测温枪和测温摄像头,利用的是不同温度的物体会发出不同的红外线的原理。
一种测温枪丨来源:https://www.pce-instruments.com
 
电子设备或家用电器上常用的测温元件,因为涉及到和电路相互作用,所以主要选用热电偶和热敏电阻两种。
 
热电偶(thermocouple)顾名思义,一般由两根不同的平行金属丝组成,它们的一端可以称为“受热端”,而另一端可以称为“冷端”。
 
受热端受热时,其内部有些电子会获得足够的能量而跑到冷端;不同的金属,其电子受热逃脱的程度不同,因此在它们的冷端,电子的分布是有差异的,因此测量这两个冷端之间的电压,即可知道它们受热端所处的温度了。
热电偶的原理丨来源:http://yunrun.com.cn/
 
而热敏电阻(thermistor)则是一种特殊的电阻,其电阻值会受到温度高低的影响。因此只要测量电阻阻值的大小,就可以间接知道其温度的高低了。
热敏电阻丨来源:https://www.electrokit.com/
 
所有这些测温工具,并不是直接测量温度的本质——微粒运动的快慢,而是都依赖温度的某个其他效应,也就是需要其他物质做媒介。
 
可是当人造太阳中等离子体的温度达到1亿度时,没有任何物质能够存在其旁边,所以这些间接的方法也就都失效了。要想测量这么高的温度,是时候回归温度的本质了。
 
电子测速:多管齐下
 
既然温度的本质是物质中微粒运动速度的快慢,要想在在1亿度高温下,进行温度测量,那就只能测量微粒运动的速度了。
 
在人造太阳中,待测温的工作物体是等离子体(plasma),构成等离子体的微粒是电子和离子。围绕着这两种微粒,科学家发明了一系列不同的测速工具。
 
其中一种方法是基于磁场的。当电子在磁场中运动时,磁场会对其施加一种称为“洛伦兹力”的作用力,使其进行螺旋运动。
 
而电子是带电的,进行旋转运动时会发射出电磁波,这电磁波的频率跟电子旋转的速度有关。这样,我们只要检测这电磁波的频率,就可以通过推导出的数学规律来计算出电子运动的速度。而根据这速度,我们就可以度量电子的温度。
 
(按定义来说,温度是“平均动能”的量度,因此只测量一个电子的速度,并不能得出其温度。要想判断等离子体的温度,必须测量一系列的电子,将其速度拟合到麦克斯韦-玻尔兹曼分布上。)
在磁场中,不同运动速度的电子会产生不同频率的螺旋,进而产生不同频率的电磁波。测定这一电磁波,可以知道电子运动的速度丨来源:https://www.scienceinschool.org
 
而另一种方法的原理,跟交警使用的测速仪的原理是一样的,也就是多普勒效应(the Doppler effect)。
 
多普勒效应最直观的体现,就是当鸣笛的汽车从我们身边驶过。当汽车逐渐靠近我们时,鸣笛的音调会较高;而汽车离我们远去时,其鸣笛的音调会听起来更低一些。
多普勒效应原理示意图丨来源:baidu.com
 
这是因为,汽车的运动速度影响了声音到达耳朵时的声速,从而使得我们感受到的声音频率发生了变化。
 
向飞驰的汽车发出一束雷达波,并且接收其反射波。反射波的频率会因为车速的影响而产生改变,因此测量这一改变的大小就可计算出车速。如果向等离子体中发出一束激光,那么激光就会与其中的电子发生相互作用,而产生该激光的散射(这一现象称为“汤姆逊散射”)。
 
散射出来的激光跟入射激光相对来说,其频率会稍有不同,这是由于散射过程受到了电子本身移动速度的影响,就好像雷达波受到车速影响,而改变了频率一样。
多普勒原理测量电子速度:左侧的激光照在电子上发生汤姆逊散射,由于电子运动速度的影响,散射光的频率发生变化(变红或变蓝),上方的检测器可以检测频率变化,进而推算电子的速度丨来源:https://www.scienceinschool.org
 
通过测量这一频率的变化,就可以算出电子的运动速度,进而算出等离子体的温度。
 
变废为宝:离子测速
 
测量1亿度的高温,不能只依赖一种方法。除了电子速度的测量之外,科学家需要一些测量离子温度(也就是说,测量离子速度)的方法。
 
由于氢离子仅有一颗质子构成,其大小不足以被探测到,所以直接测量氢离子速度不太容易实现。但人们发现,等离子体中不可避免地会混入一些杂质,这些杂质成分给了科学家以灵感。
 
例如,有些等离子体约束装置中会含有金属钨,这就使得工作等离子体中混有痕迹量的钨。钨原子是较重的原子,这就使其原子核的电磁吸引力非常大,以至于在1亿度的高温下,仍然能束缚住不少核外电子。
 
在高温下,被束缚的核外电子会发出X射线辐射,这一辐射同样也会因为钨离子本身的速度而产生多普勒效应。通过测量这一多普勒效应,也就可以算出该离子的速度,并且进一步推算出离子温度了。
 
多个测温方法都有其优劣点,联合运用才可以更准确地测得温度。
 
我们何时才能实现“能量自由”?
 
对于人类社会来说,能源是推动社会发展的重要动力,能源的发展可以极大满足人类的很多需求。
 
例如,机械和肥料的使用让人们的粮食产量大为增加,而机械和肥料都是需要大量能量才能获得的物资;汽车和飞机让人们的交通更加便捷,从北京到上海只要几个小时,这在前工业时代是不可想象的。
 
如果难以理解可控核聚变对人类的意义,不妨来考虑一下人类驯服野牛野马的过程。牛马等畜力为人类提供了充足而廉价的动力来源,极大地提升了人类的活动范围和耕作能力,让人类得到了更进一步的解放和发展。
 
而核聚变与牛马的不同就在于,一克核聚变燃料所能释放的能量,约等于一匹马不眠不休地工作14.5年所贡献的能量(马:求求你做个人吧!)。
 
因此,早日实现可控核聚变,获得“能量自由”的重要性,就不言而喻了。辛勤工作的科研工作者获得的重要成果来之不易,让我们期待人类早日实现“能量自由”吧!
 
参考文献
 
[1] Dooley P (2012) Seeing the light: monitoring fusion experiments. Science in School 24: 12-16.
 
[2] Rüth C (2012) Harnessing the power of the Sun: fusion reactors. Science in School 22: 42-48.
 
[3] https://web.archive.org/web/20070221005552/http://mathworld.wolfram.com/MaxwellDistribution.html
 
本文经授权转载自微信公众号“科学大院”。本文由科普中国融合创作出品,慕云深制作,中国科学院计算机网络信息中心监制,“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。
话题:



0

推荐

返朴

返朴

2356篇文章 6小时前更新

溯源守拙·问学求新。返朴,致力好科普。

文章