财新传媒 财新传媒

阅读:0
听报道
前段时间收到一位热心读者的邮件。信中提到,如果认定1-1+1-1……=1/2为事实,就会得出1+2+3+……=-1/12这样难以令人理解的结论。这位读者所提及的自然数求和问题,恰巧在量子理论和弦理论中都起到颇为重要的作用。从真空的能量,到时空的维度数量,都与自然数之和有着微妙的联系。在这个小小的数学魔术里面,甚至还隐含着时空不连续的秘密。
 
撰文 | 董唯元
 
数学老师曾告诉我们,只有收敛的级数才能求解无穷项之和,然而在一些科普书中,却会遇到一个神奇的求和:
所有自然数之和怎么会是负数,而且还是个分数?这到底是人性的扭曲,还是道德的沦丧?
 
把对称轴当作级数和
 
想要理解这个古怪的结论,我们先来看一个简单的例子:1, -1, 1, -1, ……这个序列可以求无穷项之和吗?意大利数学家格兰迪(Dom Guido Grandi,1671-1742)早在1703年就开始认真琢磨这个问题,可以说,这是所有发散级数求和研究的起点,这个序列后来就被命名为“格兰迪级数”。
意大利数学家格兰迪丨图源:维基百科
 
也许有小伙伴猜测,这个序列中1和-1的数量既然同样多,那么总和就应该等于0。可惜这样的猜测是错误的。无穷集就像个再生能力很强的变形虫,部分与整体同样多。我们从序列中拿走任意个1或者-1之后,剩下的1和-1数量仍然相同。如果所剩下的1和-1加和为零的话,那么岂不是总的求和仅由先取出的1或-1的数量决定——也就是任意整数。这显然太不靠谱了,看来压根不能依靠比较1和-1的数量来求和。
 
 
哈!根据这个等式,我们又一次得到了 A(∞)=½ 的结果。这回貌似没有明显违法的地方了,警察来了也不怕。可是,总还是感觉哪里不对。
 
A(1)=1
 
A(2)=1-1=0
 
A(3)=1-1+1=1
 
 
 
相关的定义不止一种。大体来说,主要有切萨罗求和与阿贝尔求和两类,另外拉马努金和黎曼等人也发展出许多更一般性的理论,中间还掺有源自欧拉的诸多贡献。那些数学语言虽严格,但催眠和劝退的副作用也不小,所以本文不打算纠结于那些从集合论谈起的基础定义,只使用非常“物理”的视角来定义: A(∞)表示所有 A(n)的平均值。
以“平均值”定义的求和方式,使许多发散级数都可以进行求和。例如
 
1-2+3-4…
 
 
B(0)=0
 
B(1)=1
 
B(2)=1-2=-1
 
B(3)=1-2+3=2
 
 
把这些B(n)所对应的点画在图上之后,完全不需要动笔计算,用眼睛就可以直接看出所有B(n)的平均值是1/4。
如果只看图还不放心,我们也可以借助前面 A(∞)=½ 的结论来推算 B(∞):
 
 
把自然数之和变成-1/12的魔术
 
当然,画出点来再用眼睛直接瞪出结果的方法,有时候也需要一些技巧。就以全体自然数之和为例,我们同样地令C(n)代表前n项和
 
 
这样我们就把每个C(n)对应的点,都拆成上式中绿色项和紫色项所对应的两个“半点”分别画出来,居然又可以凑成两条对称的曲线。
当我们把无限个“半点”都辛苦画完之后。就可以指着两根曲线中间的对称轴宣布:
因为所有C(n)的平均值就等于所有“半点”的平均值,而两根曲线上的“半点”分布完全对称,只在绿色曲线的开头位置差了一个无关紧要的0。
除了看图猜值,我们也可以借助刚才的 B(∞)=¼ 那个结果,再来计算一遍 C(∞)。
 
 
这样就能看出,-1/12 这个数值,并不像1+1=2那样自然天成理所应当,而是需要事先假定“全体自然数之和是一个确定的数”,然后再精心挑选出一个逻辑自洽性最好的数值,指定其为全体自然数之和。只不过当逻辑自洽性和直觉发生明显冲突的时候,我们都会感觉惊诧,这在数学发展的道路上已经不是什么新鲜事了。
 
伸向无穷大的剪刀
 
前面的讨论中,我们直接无视了数学极限概念,粗暴地使用平均值当做发散级数的和。现在让我们重新捡起极限概念,从另一个角度看看-1/12是怎么跑出来的。
 
对 C(n) 这个发散级数,我们可以引入某个剪刀函数 f(x) 来压制那些趋向无穷大的项,从而使发散的趋势在某个特定的位置N附近停下来,并最终收敛到某个极限S(N)。这样我们就用标准的极限概念构造出一个S(N),当N有限时,S(N)是个有限值,而当N趋于无穷大时,S(N)就对应着全体自然数之和。
 
真空的能量
 
站在实用的视角来说,我们有时候需要像使用收敛级数一样处理自然数之和,所以就不得不找到某个确定的“缰绳”来驾驭。比如在研究真空能量的时候,物理学家就遇到了全体自然数之和,而且非常希望这个和是个确定的数。
 
在量子场论的理论模型中,真空就像一张立体弹簧网,由无数小弹簧横纵交织而成。而所谓粒子,就是其中某些小弹簧的振动足够剧烈,以至于远远望去以为弹簧网中出现了什么异物似的,但只要凑到近处就会看出,那里除了振动本身别无他物。也就是说,粒子本质上就是真空的振动。因此,当能量变化时,粒子的数量不必受任何守恒律的约束,可以凭空增加或者减少。不过,粒子能否产生或消失却与小弹簧的振动频率有关。在振动频率为ω时,粒子数n与场的能量E之间存在这样的关系:
从关系式可以看出,真空每攒够一份ћω大小的能量,就会产生出一个粒子;反之每减少一份就会擦除一个粒子。或者干脆说,每个粒子其实就是个ћω大小的能量包。有趣的是n=0时,它对应着真空里没有粒子的情况,此时能量是½ћω。也就是说,当真空的能量低到不能再低的时候,能量仍然不是0,这就是真空零点能。下面我们来具体计算一个有限空间内的真空能量,看看它与全体自然数求和到底是什么关系。
我们知道,两端固定的弹簧上只能存在驻波,即波长的整数倍恰好等于两端距离的波,因为只有这种波在来回反射过程中可以维持能量,其他形式的波都会自我消减。导体对于电磁场也有一模一样的作用。在距离为L的两块金属板之间,只能存在波长恰好为 λn=L/n 的电磁波,其中n是正整数。每个这样的电磁波频率为
 
 
如下图这样放置三块相互平行的金属板,使甲乙之间距离为a,乙丙之间距离为b。
 
需要澄清的是,卡西米尔效应的实验证实,只能说明真空零点能的存在,但是并不能真的用来验证数学意义上的所有自然数之和。其实,现实中的金属板只能阻拦有限频率范围内的电磁波,当频率大过某个数值时,金属板就无法阻拦这种极高频率的波。所以从更精确的角度计算卡西米尔效应时,需要考虑这种高频截断。不过具体计算会用到欧拉-麦克劳林公式和伯努利数这些催眠的内容,本文就不再涉及了。
 
下面我们转到弦理论,看看所有自然数之和是如何与维度的数量产生关系的。
 
时空的纬度
 
 
以上就是玻色弦理论要求25+1维时空,以及超弦理论要求9+1维时空的故事梗概,希望读者能借助这些实例,对自然数之和在物理中的作用建立一些具像理解。
 
离散的时空
 
 
之所以能产生无限大的频率,就是因为我们允许存在无限小的波长。那么自然就会意识到,可以消除“紫外灾难”的理论模型中,空间必然存在有限的最小尺度。更直白地说,就是空间不可能是连续的舞台,而必须是离散的梅花桩。这个最小尺度究竟是多少呢?一个天然的候选者,当然就是普朗克长度。
 
 
 
显然,呈正比的那部分能量,在乙板左右产生的作用力始终相互抵消,只有第二部分呈反比的能量,才对乙板产生了作用力。由此可见,卡西米尔效应是在两个巨大的首项恰好相互抵消之后,在第二项上显现出的效应,所以这种力异常微弱,只有把两个面积达平方米量级的金属板靠近到微米距离时,才能产生可供测量的吸引力。
 
现在我们才算真正解释了卡西米尔效应与自然数之和的关系,如果未来再遇到有民科企图用这个实验来证明自然数之和是个负数,尽可以毫不犹豫地送他一个白眼。
话题:



0

推荐

返朴

返朴

2662篇文章 1天前更新

溯源守拙·问学求新。返朴,致力好科普。

文章