财新传媒 财新传媒

阅读:0
听报道

中微子概念的提出具有灵光一现的戏剧性,而中微子的发现和基本物理性质的探测则是粒子物理实验学家长期艰苦努力的结果。然而,宇宙线中微子或太阳中微子的产生和探测一直都是被动形式的,而反应堆或固定靶实验产生的中微子的能量相对较低。2023年3月,FASER实验宣布首次在对撞机上直接观测到较高能量的中微子。

撰文 | 陈新、胡震、王青(清华大学物理系)

今年3月,在意大利举行的第57届 Rencontres de Moriond电弱相互作用和统一理论会议上,FASER(Forward Search Experiment)[1]宣布首次在大型强子对撞机上直接观测到中微子。这对于我们理解中微子的基本属性和粒子天体物理学中的观测结果非常重要。

中微子不带电,质量非常轻(小于电子的百万分之一),以接近光速的速度运动,只参与非常微弱的弱相互作用,具有极强的穿透力。每时每刻,有数以千亿计的中微子流经我们的身体,而我们却毫无感知。因此,中微子获得了“幽灵粒子”的绰号。中微子的检测非常困难,即便是穿越地球直径那么厚的物质,在100亿个中微子中也大约只有一个会与物质发生反应。实际上,大多数粒子物理和核物理过程都伴随着中微子的产生和吸收,例如核反应堆发电(核裂变)、太阳发光(核聚变)、天然放射性(贝塔衰变)、超新星爆发、宇宙射线等等,但是我们探测中微子的手段却相当有限。而且,大部分中微子实验都位于地下或冰下,并需要在超纯水或液体闪烁体环境中布置足够体量的探测器,比如中国的大亚湾反应堆中微子实验,日本的超级神冈中微子探测实验,美国的IceCube实验,以及在建的具有两万吨液体闪烁体的中国江门中微子实验站。它们或则是用于探测反应堆中微子,或则是为了捕获宇宙线中微子或太阳中微子的蛛丝马迹。

当然,中微子也可以在欧洲大型强子对撞机LHC上被大量产生,但LHC上四个主要的大型探测器,即ALICE、ATLAS、CMS和LHCb,都不适合探测与粒子束流线平行产生的轻的和相互作用极其微弱的粒子的信号,比如中微子和暗光子(注:暗光子尚未被证实真实存在)。虽然垂直于束流线方向的中微子动量可以被计算得出,但这也只是根据动量守恒原理进行的间接测量。

2019年,一些目光长远的理论学家和在这四个探测器上工作的一批实验学家看到了这一局限性,向欧洲核子研究中心(CERN)提交了建造一个探测超越标准模型的长寿命粒子(LLP)和中微子的小型探测器的建议,并很快获得了批准。这个探测器被命名为FASER,它位于ATLAS前端沿质子束流线切线方向480米远处,用来探测在ATLAS碰撞中心产生的LLP的衰变产物。这种粒子通常质量很轻,跟标准模型粒子耦合强度很小,所以很容易逃脱一般探测器的法眼。如果质量不是太小,它会衰变为轻子或光子对。在它的飞行路径上放上一个探测器,就可以探测到这些LLP粒子的衰变产物,从而证实它的存在。LLP粒子可以是暗光子、类轴子粒子或者具有奇CP宇称的标量粒子。一般来说,沿着束流线切线方向,LLP和中微子的产率最高,也最有希望探测到LLP和中微子。

FASER放置于欧洲核子中心TI12隧道内,这段隧道连接LHC和附近的超级质子同步加速器(SPS), LLP在ATLAS探测器中产生后,飞行480米直线距离后进入FASER,其沿途的衰变产物将会被FASER探测到。在此过程中,LLP是穿越了10米厚的水泥和90米厚的岩石层之后才到达FASER。标准模型之外的许多模型都预测了LLP粒子的存在。这些模型试图解决物理学中一些大难题,例如暗物质的性质、中微子质量的起源以及物质和反物质在数量上的巨大差别。

图1: TI12隧道内部

图2: 安装在TI12隧道内的FASER

FASER 还包括一个名为 FASERν的子探测器,它专门设计用于探测来自ATLAS对撞中心的中微子。这些中微子所在能区的相互作用尚未得到详细的研究,其反应截面也还没有被测量过。FASER的电子学探测器无法探测到对撞机产生的中微子,因为它缺少足够的靶物质材料来形成中微子与物质之间非常微弱的相互作用。而FASERν由上千块钨吸收板和核乳胶交替构成,可以既作为靶物质又作为探测器来观测中微子与物质的相互作用。2021年,用于验证的FASERν Pilot探测器公布了2018年收集的数据结果,宣布首次探测到了来自对撞机的6.1个中微子候选事例[2]

图3:中微子候选事例在核乳胶探测器中的影像

参考文献

[1] https://faser.web.cern.ch/

[2] https://doi.org/10.1103/PhysRevD.104.L091101

[3] https://arxiv.org/abs/2303.14185

[4] https://home.cern/news/news/experiments/new-lhc-experiments-enter-uncharted-territory

[5] https://indico.cern.ch/event/1227016/contributions/5314959/attachments/2614023/4517266/FaserPhysicsResults.pdf

[6] https://news.uci.edu/2023/03/20/uc-irvine-led-team-is-first-to-detect-neutrinos-made-by-particle-collider/

[7] https://www.phys.tsinghua.edu.cn/info/1229/5480.htm


本文受科普中国·星空计划项目扶持

出品:中国科协科普部

监制:中国科学技术出版社有限公司、北京中科星河文化传媒有限公司

 

话题:



0

推荐

返朴

返朴

2406篇文章 4小时前更新

溯源守拙·问学求新。返朴,致力好科普。

文章